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Abstract

The paper presents a new approach in the bending analysis of helicoidal structures with a large non-linear pretwist
and an external lateral loading. It also addresses the issue as to what extent the linearized twisting curvature is
applicable in the analysis of pretwisted plates. Employing a non-linear helicoidal model and a natural orthogonal
coordinate system, the large non-linear pretwist is formulated and the energy stored in a distorted helicoid subjected to an
external pressure normal to the helicoid axis is derived. By integrating the internal strain energy and external pressure
work over the helicoidal domain, a non-homogeneous system of equations is presented and numerical solutions are
obtained. Significant structural responses such as deformation components and resultant, the effects of width and
thickness of helicoid on bending are analyzed and discussed. The analysis can be extended to other areas of interest such
as turbomachinery blades, drilling structures, motors in micro-electro-mechanical systems and also DNA biomechanics.
© 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Helicoidal structures are essential components in many engineering applications such as turbomachinery
blades and drilling structures. Although they belong to the same family of helicoidal structures, the former
has attracted intensive research in mechanical engineering (Reissner, 1954, 1959; Maunder and Reissner,
1957; Knowles and Reissner, 1959; O’Mathuna, 1963; Wan, 1967, 1968, 1969a,b, 1970, 1990; Reissner and
Wan, 1968; Mallett and Wan, 1971, 1973; Leissa, 1973, 1980, 1981; Leissa et al., 1982, 1984; Leissa and
Ewing, 1983; Rao, 1973, 1977, 1980, 1983, 1987, 1991) while the latter is a subject of rock mechanics in-
terested in civil, mining and petroleum engineering disciplines (Selvam and Sujatha, 1995; Christoforou and
Yigit, 1997; Challamel, 2000). With the advent of modern technology in micro-electro-mechanical-systems
(MEMYS), helicoidal structures find many new uses in minute motor and turbine systems integrated into
electronic circuits.
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The separation of research in helicoidal structures by two different groups of researchers is mainly due to
direct relevancy in their fields of engineering applications. The analytical, numerical and experimental
solutions for turbomachinery blades are abundant (Leissa et al., 1984; Kielb et al., 1985; MacBain et al.,
1985) while established research in dynamics of drilling structures is limited to simple models and empirical
results because of the complexity in modelling and operating conditions. The reason is obvious. In mod-
elling and analysis, a turbomachinery blade can be modelled as a beam (Rao and Carnegie, 1970; Rao,
1991; Leung, 1991; Leung and Chan, 1997), a plate (Wan, 1969b; Reissner and Wan, 1971; Leissa et al.,
1984; Rao, 1991; Liew and Lim, 1994a; Lim and Liew, 1995a) or a shell with a small linear pretwist (Leissa
et al., 1982; Leissa and Ewing, 1983; Lee et al., 1984; Liew and Lim, 1994b; Liew et al., 1994, 1995; Lim and
Liew, 1995b) but such assumption is not valid for drill. Analytical and numerical solutions for turbo-
machinery blades could be obtained quite directly by solving the governing homogeneous or eigenvalue
system.

In turbomachinery blade analysis, the beam model is accurate for slender blades. For blades with a small
aspect ratio, the plate and shell models are more appropriate. Shell models are preferable to plate models
because the effect of surface curvature is considered. The shallow cylindrical shell model has been applied
by Leissa and his associates to study the vibration of blades with uniform (Leissa et al., 1982; Leissa and
Ewing, 1983) or variable thickness (Lee et al., 1984). A similar analysis has also been undertaken by Liew
and Lim (1994b) for cylindrical shells with generally varying thickness. One major deficiency of the
cylindrical shallow shell model, however, is the constant chordwise curvature. A better model of an actual
turbomachinery blade should feature a shallow shell with not only non-uniform planform but also variable
chordwise curvature. Thus an open conical shell model is more appropriate. The vibration of open conical
shells has been reported respectively for untwisted shells with uniform thickness (Lim and Liew, 1995b),
pretwisted shells with uniform thickness (Liew et al., 1994), and pretwisted shells with variable thickness
(Liew et al., 1995).

Despite the intensive research on turbomachinery blades as describe above, to the author’s knowledge,
most of the publications assume linear pretwist and are valid only for a small angle of pretwist, presumably
less than 30°. In some of the publications, numerical solutions were presented for blades of up to 45° of
angle of pretwist. These results are thus unreliable and the models cannot be applied to analyze structural
dynamics of drills as drills are helicoidal structures with highly non-linear pretwist. Among some analyses
which consider large non-linear pretwist of plates and helicoidal shells with and without side-force are
Reissner (1954, 1959), Maunder and Reissner (1957), Knowles and Reissner (1959), O’Mathuna (1963),
Wan (1967, 1968, 1969a,b, 1970, 1990), Reissner and Wan (1968), Mallett and Wan (1971, 1973) analyzing
the axial extension, torsion, rotationally symmetric shearing, bending and spirally sinusoidal stress dis-
tribution. Besides, Walker (1978) considered the vibration of fan blades, Tsuiji et al. (1994a,b) presented
formulation for free vibration of curved, pretwisted thin plates using a non-orthogonal coordinate system
and Mockensturm and Mote (2001) analyzed the response of twisted plates with fixed support separa-
tion. Although significant solutions were presented for helicoidal structures with large angle of pretwist,
no solutions are available for bending of such structures in the presence of an external lateral surface
loading.

In this paper, it is intended to present a new approach and numerical solutions for bending analysis of
helicoidal drilling structures, i.e. structures with highly non-linear pretwist, subject to an external lateral
loading. It also discussed the extent of applicability of linearized twisting curvature in the analysis of
pretwisted plates. With reference to a natural orthogonal coordinate system, the non-linear pretwist is
formulated and the energy stored in a distorted drill model subjected to constant transverse pressure is
derived based on the shell theory of Goldenveizer (1961) and Novozhilov (1964). By integrating the internal
strain energy and external pressure work over the drill domain, a non-homogeneous system of equations is
presented and numerical solutions are obtained. Significant structural responses such as deformation
components, bending resultants and the effects of width and thickness of helicoid are analyzed and dis-
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cussed. The analysis can be extended to other areas of interest such as applications of blades and motors in
MEMS and also on biomechanics if the non-Newtonian fluid lateral loading is taken into consideration.

2. Helicoidal model with non-linear pretwist and formulation of strains

The geometry of a helix and a helicoid with length «, radius R, width b and projected angle of pretwist 0,
(at a) are shown in Figs. 1 and 2. The helicoidal structure is subject to a lateral load ¢. For such a helicoid
we impose a condition of » < R. A curvilinear coordinate system, perpendicular and tangential to the helix
and lying in the osculating plane (r,0r/06), is adopted. With the binormal vector to the helix b, it forms an
orthogonal coordinate system (r,0r/00,b), and its transformation with respect to the Cartesian system

(i.j, k) is
NN
r:r(cos(91+5m9])+$k (1)

where ¢ = 6y/a is the rate of change of 6 along the z-axis, or the rate of pretwist. For this curvilinear
coordinate system, the Lamé parameters or coefficients of the first quadratic form can be derived as . = 1,

hg = (1/¢)\/1 + r>¢?* and the base vectors are

e, = cos 0i + sin bj

1 1
=— | —rsinfi+ 0j+—k
e n rsin 0i + rcos 0j (2a—c)

.. . .
e, = ——[sin 0f — cos 0f + rok]
@hy

Deriving from the theory of surfaces (Young, 1993), a helix (Fig. 1) has an infinite radius of curvature
with respect to the coordinates (r, §), whereas the radius of twist (or torsion of the space curve r) is finite as
(Lim, 1999a,b)
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Fig. 1. Geometry of a helix.
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Fig. 2. Geometry of a helicoidal structure.
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(3a—c)

where R, and Ry are the radius of curvatures in the r- and 0-directions, respectively, and R, is the radius of
twist. The twisting curvature derived in Eq. (3¢c) is non-linear and, therefore, it accommodates a surface
with an arbitrarily large twisting curvature instead of the linearized twisting curvature (Leissa et al., 1982,
1984; Leissa and Ewing, 1983; Lee et al., 1984; Liew and Lim, 1994a,b; Liew et al., 1994, 1995; Lim and
Liew, 1995a,b) which is only valid for a small angle of pretwist.

Let u(r, 0) be the displacement vector composing of u,, uy in the osculating plane and u, in the binormal
direction, then the linear normal strains, shear strains, changes of curvature and twist can be derived based
on the shell theory of Goldenveizer (1961) and Novozhilov (1964) as

Ou, 1 Ouy ru, Oupg ruyg 1 Ou, 2u

= — = — — _ = - — —= _——-—— 4
o T TR T T Y0 o (4a-c)

B 3 Oup 3rup 0wy 1 Ou,
= ool or 2okl o | 2l 00 (4d)

= —  — — — — — —— _— 4
Koo 20n3 00 K2 307 20h} h 6r+290h§ or (4)

1 Q*u, #»Ou, 1 Ou, 1 Ouy ru,
. B e DI s m
T 300 TR 00 ok or ol 00 gl (4f)

The strain expressions above deviate slightly from the expressions of Wan (1967, 1968) and Reissner and
Wan (1968) which may be due to different shell theories adopted.
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3. Formulation of energy, work and a non-homogeneous system

During bending, the strain energy for a helicoidal structure with a constant thickness 4 can be expressed
as

U=U;+ U
1-—
// [&W + &5y + 2veEgp + —— 7 %9 hydrd0
+5 //A (12 + Kgy + 2vic,icop + 2(1 — v)T2y| hgdrd0 (5)

where D = ER3/12(1 —+?) is the flexural rigidity, E is the Young’s modulus and v is the Poisson ratio. The
first and second integrals in Eq. (5) correspond to the stretching strain energy, Us, and bending strain
energy, U,, respectively. Equations for varying thickness /(r,0) can be reformulated accordingly, by
retaining /3(r, 0) in the domain integrals for strain energy in Eq. (5).

The work done due to external loading is

W://Aq(r, 0) - u(r,0)hydrdo (6)

where ¢(r, 0) is the loading distribution over domain A. Assuming the loading normal to helicoid axis is
along the positive x-direction (Fig. 2) and be represented by ¢ = gi. As the helicoid is assumed infinitely
long, it is possible to analyze only one unit (360°) of the repeating helicoid. Decomposing ¢ = gi in the
orthogonal coordinate system (r,0r/00, b) yields

7sin 0 sin 0
q + q

q = qcosle, — I e o e -
Substituting Eq. (7) into Eq. (6) yields the work done on the helicoid as
W= q/ / |:h(} cos u, — rsin Quy + %ub drdo ®)
A

For brevity and generality, a set of dimensionless coordinate system and dimensionless parameters are
defined as
0 _ U uy U

r — _ 0
Ra 007 ¢ @3 0 R7 u R Uy R Up R

Using these non-dimensional scheme and substituting expressions in Eqs. (4a—f) into the equations for
stretching strain energy and bending strain energy in Eq. (5) yield

2 2

6D - [ Ou, 1 [ ouy 27 Ouy O, 5 65{, Oug  Ogr
U, = — Oohg| — , "+ 2 »
hz//z 00<a7>+ <60) +h2 60+ u,+v l60+ u]

2
L=vigq (St _ 20, Oy 00 uy A0 uy. 007 ., 270
b ' oF 00 oF gy or R R o0

(9a-g)

=

2
40,7 _ _ 1 [ ou, 4 ou, = 46y ,
—5 + o= —— =t =
oh; Oohy \ 00 oh: 00 o°h}
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and
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which involve the integration over the normalized domain 4. In terms of these dimensionless terms, the
external work can be expressed as

_ in 0 _
W = qR*0, // [h() cos Ou, — rsin Ouy + %ub} drdo (12)
A

The dimensionless displacement components (#,, 4y, 4;) may be represented as a general two-dimensional
polynomial series as

i, = ; Ci¢'(7,0) Z Ci (7, 0); Z Ci i (7, (13a—)

where Ci, Ci, Ci are coefficients and ¢, ¢}, ¢, are admissible shape functions of the i-term. The admissible
shape functions can be represented by truncated two-dimensional polynomial series to be defined in due
course.
In accordance with the Ritz principle, an energy functional can be defined as
F=U-W (14)
which can be minimized with respect to the coefficients as
oF  OoF  OF
oci 7 ach 7 oC

to yield a system of non-homogeneous equations as

[K{C} - {Q} =0 (16)
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where
Krr Krﬂ Krb CV Qr
K] = Ko Ko |3 {C}=1GCop; {0}=10, (17a—c)
sym K, Cy 0,

are the stiffness matrix, displacement coefficient vector and external loading vector, respectively. Elements
of the stiffness sub-matrices can be derived as

. 12R? 1(1010:0.1 (0000:2 — £ (0010:0.— 1000- L=V o010
K/ = 11]( ;0,1) +11{(0000,2, 3) =+ v([l]‘(OOIO,Q 1) _‘_11{(100040,1)) + [lj.(OlOl,O, 1)
rr h2 rr rr rr rr 293 rr
5—3y i(0101;0,—5) 2(1-v) ij(1010:0,—3) __ 7ij(0010;1,—5) __ yij(1000;1,—5) _ yij(0000;2,—7)
—— + === I I I ) (18a)
262 00 rr a rr rr rr rr
. 12R? 1 - 0110:
Klr'/{) o = |:Iz/ (0001;1,—2) + ]z] (1001;0,0) n > v (IZ)(O“O‘OO Jr11101001 2))}
3—5v/ H(0100:1.— 2(1 —v) 7 ii1001:1.— H(0001:1.—
I dd 0, (I’ (0100;1,-6) Ir_é(0100,17 4)) +%(1"{’(10m.1, 4) _Irjg(oom,l. 6)) (18b)
sz/l', _ 12R2(1 ) Iii(moo;o,fz) + 3—v (Iij(ono;l, 4) +Iz, (0102;0, 4)) _ 1 - 3\’11‘1‘(0120;0772)
" h*®0, " 2p0, 290,
2(1 — e I 0011 00012,
+ (_0 v) (I;{fm”’o’ 2) —I,{,(OO“’I’ 4) —I,{,“OO]'I’ 4) —I,{,(OOOI’z’ 6)) (18¢)
®Uo

o 12R?T1 _ 1 — v/ iiono: 1H0010:1.— £#1000:1— 1#(0000:2.—
K = { ]0,001011 N . (1070(1010,04) _10,0<001o,1, ) _1010(100041, 1) +10,0<0000,2, 3))]

h* 0,
—3v j(1010;2,—7 j(0010;1,—5 j(1000;1,—5 j(1010;0,—3 2<1 _V) j(0101:0,—5
S (T S 9 gen ) EEE D (1sa)
0
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0

and elements of the external load vector are

LS 7 i =17
0 =— /hg cos 0¢; drdo (19a)
D i



4264 C.W. Lim | International Journal of Solids and Structures 40 (2003 ) 42574279

R3
1 //ro sin 0}, d7d0 (19b)
R} 0
_ //ﬂ@d o (19¢)
The integral notation in Eqs. (18a—f) is defined as
a+b al’+d 0 _ _
L") //a 0l 0) O eyt (20)
o0 orof

By specifying an external loading parameter ¢gR*/D, the system of non-homogeneous equations (16) can be

solved to yield the response of the helicoidal structure. This system can be solved numerically using a

standard numerical solver, such as the IMSL library in Fortran, to obtain the deformation solution.
Detailed derivatives of the energy functional as given in Eq. (15) are presented in Appendix A.

4. Boundary conditions and admissible shape functions

There are four boundaries for the helicoid considered in this manuscript, two for » = constant and
another two for 0 = constant. For each boundary, there are four geometric or natural boundary condi-
tions. Due to geometric symmetry of a helicoid for every cycle of 360° along the axis, we have the following
geometric boundary conditions when analyzing one-cycle of helicoid. At the two boundaries when 6 = 0°
and 0 = 360° which coincide with the x-axis (Figs. 1 and 2), the geometric boundary conditions are

o =y =0 (21)

The displacement component u, % 0 applies on these boundaries because the helicoid is subjected to an
external loading in the x-direction while uy = u, = 0 apply because of symmetry of repeating helicoid for
every unit of 360°. For the other two free boundaries where 7 = 1 — b/R (inner boundary) and 7 = 1 (outer
boundary), there is no geometric boundary conditions as no displacement or rotation is constrained. Unlike
the plate and shell analyses, the four natural boundary conditions on the boundary of » = constant involves
coupled relations of normal force N,, tangential force N,y, shear forces Q,, bending moment M, and twisting
moment M,y. Similarly, the other two natural boundary conditions on the boundary of 6 = constant in-
volves coupled relations of Ny, Ny, Qs, My and My,. The exact governing differential equations and natural
boundary conditions can be derived using the Euler-Lagrange equation, the Hamitonian principle or the
method of variation of energy (Goldenveizer, 1961; Novozhilov, 1964; Leissa, 1973; Rao, 1991) which is
not within the scope of this analysis. Coupling of these terms in the natural boundary conditions surfaced
due to the presence of the non-linear radius of pretwist 1/R,y. A description on natural boundary conditions
of a helicoidal structure can be referred to Goldenveizer (1961) but no explicit expression is available.
Fortunately, only the geometric boundary conditions are required using the Ritz principle here. The
geometric boundary conditions in Eq. (21) can be imposed to the strain energy and work expressions in
Egs. (10)—(12) as described below.

The geometric boundary conditions in Eq. (21) indicates that the helicoid is not properly supported and
will experience a rigid body translation along the x-direction when subject to the distributed loading. Here,
we deal with an infinitely long periodic helicoidal structure and the interest is in the relative deformation of
helicoid with respect to a reference point, in this case the origin at (0,0,0), which translates in parallel with
the rigid body motion. The rigid body mode has been intentionally excluded by setting at the outset the
existence of strain energy in Eq. (5) due to the relative deformation of helicoidal structure during bending.
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With periodic boundary conditions in Eq. (21) and using the orthogonality of trigonometric functions, it
is easy to verify that displacement and stress fields of the periodic helicoidal structure can be expressed in
trigonometric series in terms of sin 0 and cos 0. Therefore, the two-dimensional shell-like problem can be
simplified into a one-dimensional beam-like problem. The more complicated two-dimensional shell-like
analysis has been adopted here in order to facilitate generalization of infinitely long helicoidal structure in
this paper to a more realistic finite helicoid with non-periodic boundary conditions.

The displacement components (&, #y, #,) at mid-surface of helicoidal structure are approximated by
finite series expressed in Egs. (13a—c). The corresponding admissible shape functions (¢,, ¢y, ¢,) are sets of
geometrically compliant two-dimensional polynomials derived such that the geometric boundary condi-
tions are satisfied at the outset. They are composed of the product of a series of simple two-dimensional
polynomials F(7,0) and boundary-compliant basic functions 4)};, (;’)Z, qbz. The latter are geometric expres-
sions of the helicoid boundary raised to an appropriate basic power in accordance with the corresponding
boundary constraints. Accordingly, the admissible shape functions are

m P q .
Y o =F(r0¢) FFo=> Y "1 (22a,b)
i=1 q=0 =0

where o = r, 0 or b. The highest degree of polynomial in the functions is p and it is related to the number of
terms m by

m_@+m@+a
- 2

The boundary-compliant basic functions qﬁf, d)z, qﬁlg are defined as the product of the equations of
continuous piecewise boundary geometries raised to an appropriate basic power that corresponds to the
type of boundary constraint. For constraints as given in Eq. (21), the basic functions are

pr=1; ¢r=00-1); ¢=00-1) (24)

and, therefore the corresponding admissible shape functions are

(23)

P

Sl =330 N g =00-1D)> 3 0 Y g =00-D)> > #T (250
i=1 —0 i -

i=1 q=0 i=0

q=0 i

5. Results and discussion on non-linear twisting curvature

In many previous dynamic analyses of turbomachinery blade and pretwisted plates, a linearized twisting
curvature of a/R,y &~ —tan 6, (Leissa et al., 1982, 1984; Leissa and Ewing, 1983; Lee et al., 1984; Liew and
Lim, 1994a,b; Liew et al., 1994, 1995; Lim and Liew, 1995a,b) has been adopted. The linearized twisting
curvature thus is only valid for a small angle of pretwist. No research has been performed as to what extent
the linearized twisting curvature is applicable except the preliminary analyses of Lim (1999a,b). This issue is
herewith discussed in detail.

The derivation of non-linear twisting curvature in Eq. (3c) has generalized the conventional linearized
twisting curvature a/R,y =~ — tan 6 so that a highly pretwisted helicoidal structure can be analyzed. There
exist two inherent approximations in assuming a/R,) ~ —tan(, instead of that in Eq. (3c). First,
0y =~ tan 0y and second, a/R,y = —0y is only valid if r¢ < 1. Error in the first assumption is direct as an
error of approximately 10% will occur if the angle of pretwist is 0y = 30°. To analyze the error due to the
second assumption, we have to refer to Fig. 3. In Fig. 3, the relationship of large non-linear twisting
curvature
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(26)

with respect to the distance from helicoid axis »/R, for constant dimensionless rate of pretwist @, is pre-
sented. Considering a pretwisted surface of constant rate of pretwist ¢ (= R0y/a) as shown in Fig. 3, the
twisting curvature at a point /R from the axis would be almost constant (=~ @) if < /18 rad or 10°. As ¢
is dependent on the projected angle 6, and a/R, it implies that 6, must be remained very small for a short
helicoidal structure or a short turbomachinery blade (a small a/R) if a linearized twisting curvature is to be
used. On the other hand, 6, may be allowed to have a higher value if the a/R ratio for the helicoidal
structure or turbomachinery blade is large. Nevertheless, ¢ < 7/18 must be upheld so long as the linearized
twisting curvature is used. It is interesting to see in Fig. 3 that the twisting curvature decreases from the axis
outwards. It decreases quite linearly for @ ~ n/9 rad or 20° and fairly linearly for @ ~ n/6 rad or 30°. For
@ = /6, the non-linearity effect becomes very obvious and a non-linear twisting curvature in accordance
with Eq. (3c) must be adopted. As shown in Fig. 3, the twisting curvature along the axis (/R = 0) increases
for an increasing @. However, it is interesting to note that for very high ¢ > 7/2, the twisting curvature on
the outer boundary of the helicoid (/R = 1) is actually smaller than that of a smaller @. In reality, the
twisting curvature decreases sharply and then it approaches a constant value asymptotically when /R — 1
for a helicoid with a very high @, given by

1
lim =— 27
7 [Ry| 7P @7

In Fig. 4, the relationship of twisting curvature with respect to varying @ for constant /R is presented. In
this case, the effect of ¢ on R/|R,¢| for a constant /R can be analyzed. Considering a helix (see Fig. 1) with a
constant /R, the twisting curvature increases when dimensionless rate of pretwist @ increases from zero
initially. As @ further increases, the twisting curvature reaches a maximum before it starts decreasing. The
maximum twisting curvature could be achieved if ¢ maintains a particular relationship with respect to »/R.
The maximum twisting curvature could be determined by differentiating R/|R,4| in Eq. (26) with respect to
@ and setting it to zero, d(R/|R,¢|)/d® = 0, thus yielding
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max
which occurs at p = 1/F. As shown in Fig. 4, for instance, the maximum twisting curvature for 7 = 0.5 is

(R/|R0|)nax = 1 Which occurs at @ = 2 rad.

6. Convergence study and numerical examples

As the displacement admissible functions involve finite polynomial series, convergence of numerical
solutions has to be established. The convergence of maximum dimensionless bending deflection #,,,x for an
infinite helicoid with v =0.3 and ¢R*/D =1 is presented in Tables 1 and 2 for two cases of helicoid
thickness #/R = 0.02 and 4/R = 0.04, respectively. Various helicoid geometric parameters are considered,
ranging from highly pretwisted to slightly pretwisted (increasing a/R) and from slender to wide (increasing
b/R). Two components %, and u, are tabulated along with the resultant displacement iy,x = /42 + u3 + u3.
Values for the third component #, are not presented because #,. at maximum bending deflection is a few
orders smaller than the other two components and it contributes insignificantly to the maximum resultant
displacement ;.

In Tables 1 and 2, the number of terms in the series representation in Egs. (13a—c) are increased steadily.
As observed, very good numerical convergence has been achieved and in many cases the error of
convergence is less than 1%. Convergence tests were stopped at different values of m when numerical ill-
conditioning of matrix appears thus prohibiting accurate numerical solutions be obtained for higher values
of m. A number of significant numerical phenomena have also been observed. For a slender helicoid (a
small width ratio »/R), numerical instability occurs for a small value of m as compared to a wide helicoid.
This is because /R is a parameter equivalent to the aspect ratio for a rectangular plate. A rectangular plate
with a small aspect ratio resembles a beam and in this case the two-dimensional mid-plane of a plate may
well be represented as a one-dimensional mid-axis. Thus the plate analysis reduces to the beam analysis. If
two-dimensional numerical representation is used to simulate a one-dimensional beam model, numerical
instability usually occurs because one of the dimensions is far higher than the other. In Tables 1 and 2,
m =5 (21 terms) are included in the displacement admissible functions (13a—c) for 5/R = 0.2 while m =7
(36 terms) are included in the functions for 5/R = 0.7.
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Table 1
Convergence of maximum dimensionless bending deflection (x107?) for an infinite helicoid with v = 0.3, #/R = 0.02, gR*/D = 1 where
Tmax occurs at 7 =1 and 0y = n/2 rad or 3n/2 rad

a/R b/R P ﬁ() 17{1, amax
5 0.2 4 0.13909 1.5319 1.5382
5 0.13970 1.5458 1.5521
0.3 4 0.092116 0.79004 0.79539
5 0.093682 0.81727 0.82262
0.4 4 0.069523 0.51883 0.52347
5 0.071897 0.55265 0.55731
6 0.072638 0.55381 0.55855
0.5 4 0.056761 0.40278 0.40676
5 0.060022 0.44508 0.44911
6 0.060095 0.44608 0.45011
0.6 4 0.051149 0.37948 0.38291
5 0.055897 0.43509 0.43867
6 0.056381 0.44139 0.44498
7 0.056588 0.44297 0.44657
0.7 4 0.050333 0.40074 0.40389
5 0.056565 0.46042 0.46389
6 0.057844 0.47694 0.48044
7 0.058063 0.47751 0.48103
10 0.2 4 0.47968 5.5653 5.5859
5 0.48078 5.5939 5.6145
0.3 4 0.31326 2.5888 2.6077
5 0.31564 2.6354 2.6543
0.4 4 0.23107 1.5307 1.5480
5 0.23452 1.5850 1.6023
6 0.23633 1.5929 1.6098
0.5 4 0.18126 1.0300 1.0459
5 0.18577 1.0935 1.1092
6 0.18758 1.0942 1.1102
0.6 4 0.15008 0.79812 0.81214
5 0.15642 0.88088 0.89468
6 0.15664 0.88369 0.89754
7 0.15689 0.88593 0.89979
0.7 4 0.13253 0.73106 0.74302
5 0.14169 0.83999 0.85190
6 0.14292 0.85542 0.86737
7 0.14343 0.85878 0.87077

Having established the convergence and accuracy of numerical solutions, some numerical examples are
presented to study the effects of various geometric parameters on the bending deformation of helicoid. In
Figs. 5-8, the effects of width ratio 5/R on the maximum resultant bending deformation #,,,, is investigated
for helicoid of increasing pretwist (decreasing a/R) and increasing thickness ratio /#/R. For a dimensionless
rate of pretwist ¢ = 0y/(a/R) with a fixed periodic helicoid where 6, = 360°, we may regard the helicoid as
having a low rate of pretwist for a high /R and vice versa. From Fig. 5, it is observed that %, decreases
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Table 2

4269

Convergence of maximum dimensionless bending deflection (x 10~?) for an infinite helicoid with v = 0.3, #/R = 0.04, gR* /D = 1 where

Umax occurs at 7 =1 and 6y = n/2 rad or 3n/2 rad

a/R b/R P iy u Umax
5 0.2 4 0.54310 5.7570 5.7825
5 0.54424 5.7716 5.7972
0.3 4 0.34318 2.6743 2.6962
5 0.34612 2.7153 2.7373
0.4 4 0.25682 1.7380 1.7569
5 0.26251 1.8067 1.8257
6 0.26492 1.8076 1.8269
0.5 4 0.20675 1.2803 1.2969
5 0.21488 1.3667 1.3835
6 0.21737 1.3685 1.3857
7 0.21738 1.3690 1.3862
0.6 4 0.17423 1.0345 1.0490
5 0.18473 1.1393 1.1541
6 0.18763 1.1441 1.1593
7 0.18788 1.1465 1.1618
0.7 4 0.15570 0.93835 0.95118
5 0.16957 1.0707 1.0840
6 0.17055 1.0764 1.0898
7 0.17106 1.0801 1.0936
10 0.2 4 1.8965 21.663 21.746
5 1.8992 21.712 21.795
0.3 4 1.2156 9.5585 9.6355
5 1.2206 9.6395 9.7165
0.4 4 0.89075 5.5394 5.6107
5 0.89929 5.6568 5.7278
6 0.90582 5.6636 5.7356
0.5 4 0.69714 3.6336 3.6999
5 0.70880 3.7717 3.8378
6 0.71474 3.7895 3.8564
7 0.71483 3.7981 3.8648
0.6 4 0.56452 2.5380 2.6002
5 0.57900 2.6950 2.7566
6 0.58490 2.7057 2.7682
7 0.58501 2.7064 2.7690
0.7 4 0.46966 1.8874 1.9452
5 0.48798 2.0772 2.1340
6 0.49460 2.0855 2.1434
7 0.49514 2.0895 2.1474

sharply for a slender helicoid when 5/R is increasing. At a certain /R, a minimum #,,y is reached and
beyond this point, an increase in b/R causes #n,, to increase. However, the rate of increase of #,,, beyond
the critical #,,, is much smaller than the rate of decrease before the critical #,,. In Figs. 6-8, similar
phenomenon is observed except that in some of the cases, a critical #%,,, has not been reached within the
range of 0.2<b/R<0.7 under investigation. A wider helicoid has higher structural stiffness and as the
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Fig. 5. The effect of dimensionless width on maximum dimensionless deflection for an infinite helicoid with v = 0.3, #/R = 0.01 and
gR*/D = 1.
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Fig. 6. The effect of dimensionless width on maximum dimensionless deflection for an infinite helicoid with v = 0.3, #/R = 0.02 and
gR*/D = 1.

width ratio increases, the loading is higher because a larger surface of the helicoid is subjected to the
pressure loading. From physical point of view, it is the presence of both increasing structural stiffness and
increasing pressure loading which determines the existence a critical, minimum .

It is also a common fact in Figs. 5-8 that #,,,x decreases with decreasing a/R (or increasing pretwist). As
pretwist increases, the rate of decrease of #,,x becomes smaller as the curves are closer apart. This fact is
consistent with the understanding that the stiffness of a helicoid increases with pretwist and, therefore, a
higher pretwist results in smaller deformation.

The effect of thickness ratio 4/R on #y,, cannot be directly observed in Figs. 5-8. At the first glance, an
increase in //R results in higher i, and it is contradictory to the common perception that a thicker
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structure has higher stiffness and thus a smaller deformation. The reason for this inconsistency is very
simple. The loadings for all the cases in Figs. 5-8 are different. In all cases, the loading parameter is set at
gR?/D = 1. Since the flexural rigidity D = Eh*/12(1 — v?) depends on thickness, the loading parameter is, in
fact, ¢'(R/h)’ where ¢ = 12(1 —v*)gq/E. As a result, a n times increase in 4/R while maintaining loading at
¢'(R/h)’ = 1 induces an increase of loading parameter of »’ times. In this case, the helicoid in Fig. 6 has a
thickness ratio of double of that of Fig. 5 but it has a loading eight times higher. Comparing the maximum
deflection #,,y, it has only increased by less than four times. In conclusion, a double-increase of thickness
and an octagonal-increase of loading resulting in less than four times increase in deflection do not con-
tradict the law of physics. The same reasoning applies to a comparison of results in Figs. 6 and 7 and Figs. 7
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and 8. Comparing Figs. 6 and 7, the thickness ratio increases by 1.5 times while the loading increases by
1.5% = 3.375 times. Meanwhile, 7, increases by approximately 2.2 times.

The deformation modes for a unit (0, = 360°) of infinite helicoids are presented in Figs. 9-11, respec-
tively, for a slender helicoid, a wide helicoid and a helicoid with a smaller pretwist. Undeformed and
deformed modes are presented for comparison and clarity. The magnitudes of dimensionless orthogonal
deformation components i,, uy, i, and their resultant # = \/u? + uj + u3 are also presented for the inner
(closer to the axis) and outer (further to the axis) boundaries, respectively. Major contribution of resultant
deformation comes from #, and this is particularly obvious for the outer boundary. In all cases, the
maximum resultant i, always occurs at 8, = n/2 rad and 3n/2 rad because these lines on the helicoidal
surface are normal to the loading direction.

(a) Undeformed structure (b) Deformed structure
Angle of twist Angle of twist
(n_rad) (n_rad)

T T T T T T T 2 T T T T T TT T[T r T rrrrr 2 rTr[rrrprrrrrrr
u, u u, ]
- 151 |u, = o -
7 Il ] )
I ] u, i
- sF - - 05 -
L L L | I L LA 1 I L 1 L L ] [N EENENE IR BEEEY A BN BT B |_

0.2 -0.1 M) 0.1 02 04 -03 -02 -041 "0 0.1 0.2 03 04

Dimensionless deformation (x 10°)

(¢) Deformation of inner boundary

Dimensionless deformation (x 10°)

(d) Deformation of outer boundary

Fig. 9. Deformation of an infinite helicoid with v = 0.3, a/R =2, b/R = 0.2, h/R = 0.01, 6, = 360° and ¢R*/D = 1.
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Fig. 10. Deformation of an infinite helicoid with v = 0.3, a/R =2, b/R = 0.7, h/R = 0.01, 0, = 360° and ¢R*/D = 1.

It is also observed that the outer boundary deforms higher than the inner boundary. As discussed in Fig.
3, the magnitude of twisting curvature decreases from the helicoid axis outwards along the radial direction.
Because the local stiffness is dependent on the magnitude of twisting curvature, the inner boundary would
have smaller deformation than the outer boundary as its twisting curvature, and thus its local stiffness, is
higher. For instance, the magnitude of # increases from the inner boundary to the outer boundary by
approximately two times in Figs. 9 and 11 while in Fig. 10, the increase is approximately 10 times.

It is interesting to note that #,, #y, u, and # are periodic with respect to one-cycle or 360° of helicoid. This is
expected for an infinitely long helicoid because the deformation pattern repeats itself for every cycle of helicoid
along the axis due to symmetry in geometry and pressure loading. It is also noted that &g is always 180° out-of-
phase with respect to the #, for the inner boundary but they are both in-phase for the outer boundary. For both
the inner and outer boundaries, #, is always 90° out-of-phase with respect to the other two components.
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Fig. 11. Deformation of an infinite helicoid with v = 0.3, a/R = 10, b/R = 0.7, h/R = 0.01, 0, = 360° and ¢R*/D = 1.

Comparing Fig. 10 with Fig. 9, the corresponding dimensionless deformation components are of similar
patterns because a steady, constant pressure loading is considered in these examples. A decrease in
structural stiffness or an increase in pressure loading will anticipate an increase in deformation amplitude.
For instance, the overall stiffness of a slender helicoid (/R = 0.2) in Fig. 9 is smaller than the overall
stiffness of a wider helicoid (b/R = 0.7) in Fig. 10. Therefore, the magnitude of deformation in Fig. 9 is
higher than the corresponding values in Fig. 10. By adjusting the width of the helicoid without changing
the magnitude of pressure loading distribution on the helicoidal structure, it is possible to simulate and
determine the overall stiffness of a helicoidal structure. It is also possible to adopt a varying thickness helicoid
h(r, 0) so that the stiffness at any single point on the domain of helicoid could be characterized accordingly.

7. Concluding remarks

A new helicoidal model with a large non-linear pretwist based on a natural orthogonal coordinate
system has been established for the bending analysis of helicoidal structures subject to external pressure
loading. The paper also draws a guideline on the extent of applicability of the linearized twisting curvature
model conventionally adopted in analysis of pretwisted plates. Employing the new model, the strain energy
stored in a distorted helicoid and the pressure work of external pressure loading normal to the helicoid axis
have been derived. By integrating the internal strain energy and external pressure work over the helicoidal
domain via the Ritz principle, a non-homogeneous system of equations has been obtained.

The effects of non-linear twisting curvature have been discussed at length. Significant numerical solutions
for structural responses such as deformation components and resultant, effects of width and thickness of
helicoid on bending have been analyzed and discussed. Among the important conclusions are:

e the linearized twisting curvature model is only valid for a small rate of pretwist, @ < =/18 rad;

e the non-linear twisting curvature decreases from the axis outwards and it approaches a constant value,
given by Eq. (27), asymptotically;

e for a helix with varying rate of pretwist, the maximum dimensionless non-linear twisting curvature is
given by half of the dimensionless rate of pretwist which is in turn given by the reciprocal of the dimen-
sionless radial distance, as given by Eq. (28);
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the maximum dimensionless deflection #,,,x decreases with respect to increasing width ratio and there
exists a critical Umax;

Umax decreases for a helicoid with increasing rate of pretwist;

max always occurs at 0y = /2 rad and 37/2 rad at the outer boundary (7 = 1) on the helicoidal surface
and these lines are normal to the loading direction;

for the inner boundary of a helicoid, #, is always 180° out-of-phase with respect to #, but they are both
in-phase for the outer boundary, while, for both the inner and outer boundaries, #, is always 90° out-of-
phase with respect to the other two components; and

the outer boundary of a helicoid has larger deformation comparing to the inner boundary because its
local stiffness is smaller.

The analysis can be extended to other areas of interest such as turbomachinery blades, drilling struc-

tures, motors in MEMS and also DNA biomechanics.
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Appendix A

The derivative of the strain energy components in Eq. (15) can be derived as
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