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Abstract

The paper presents a new approach in the bending analysis of helicoidal structures with a large non-linear pretwist

and an external lateral loading. It also addresses the issue as to what extent the linearized twisting curvature is

applicable in the analysis of pretwisted plates. Employing a non-linear helicoidal model and a natural orthogonal

coordinate system, the large non-linear pretwist is formulated and the energy stored in a distorted helicoid subjected to an

external pressure normal to the helicoid axis is derived. By integrating the internal strain energy and external pressure

work over the helicoidal domain, a non-homogeneous system of equations is presented and numerical solutions are

obtained. Significant structural responses such as deformation components and resultant, the effects of width and

thickness of helicoid on bending are analyzed and discussed. The analysis can be extended to other areas of interest such

as turbomachinery blades, drilling structures, motors in micro-electro-mechanical systems and also DNA biomechanics.

� 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Helicoidal structures are essential components in many engineering applications such as turbomachinery

blades and drilling structures. Although they belong to the same family of helicoidal structures, the former

has attracted intensive research in mechanical engineering (Reissner, 1954, 1959; Maunder and Reissner,

1957; Knowles and Reissner, 1959; O�Mathuna, 1963; Wan, 1967, 1968, 1969a,b, 1970, 1990; Reissner and
Wan, 1968; Mallett and Wan, 1971, 1973; Leissa, 1973, 1980, 1981; Leissa et al., 1982, 1984; Leissa and

Ewing, 1983; Rao, 1973, 1977, 1980, 1983, 1987, 1991) while the latter is a subject of rock mechanics in-
terested in civil, mining and petroleum engineering disciplines (Selvam and Sujatha, 1995; Christoforou and

Yigit, 1997; Challamel, 2000). With the advent of modern technology in micro-electro-mechanical-systems

(MEMS), helicoidal structures find many new uses in minute motor and turbine systems integrated into

electronic circuits.
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The separation of research in helicoidal structures by two different groups of researchers is mainly due to

direct relevancy in their fields of engineering applications. The analytical, numerical and experimental

solutions for turbomachinery blades are abundant (Leissa et al., 1984; Kielb et al., 1985; MacBain et al.,

1985) while established research in dynamics of drilling structures is limited to simple models and empirical
results because of the complexity in modelling and operating conditions. The reason is obvious. In mod-

elling and analysis, a turbomachinery blade can be modelled as a beam (Rao and Carnegie, 1970; Rao,

1991; Leung, 1991; Leung and Chan, 1997), a plate (Wan, 1969b; Reissner and Wan, 1971; Leissa et al.,

1984; Rao, 1991; Liew and Lim, 1994a; Lim and Liew, 1995a) or a shell with a small linear pretwist (Leissa

et al., 1982; Leissa and Ewing, 1983; Lee et al., 1984; Liew and Lim, 1994b; Liew et al., 1994, 1995; Lim and

Liew, 1995b) but such assumption is not valid for drill. Analytical and numerical solutions for turbo-

machinery blades could be obtained quite directly by solving the governing homogeneous or eigenvalue

system.
In turbomachinery blade analysis, the beam model is accurate for slender blades. For blades with a small

aspect ratio, the plate and shell models are more appropriate. Shell models are preferable to plate models

because the effect of surface curvature is considered. The shallow cylindrical shell model has been applied

by Leissa and his associates to study the vibration of blades with uniform (Leissa et al., 1982; Leissa and

Ewing, 1983) or variable thickness (Lee et al., 1984). A similar analysis has also been undertaken by Liew

and Lim (1994b) for cylindrical shells with generally varying thickness. One major deficiency of the

cylindrical shallow shell model, however, is the constant chordwise curvature. A better model of an actual

turbomachinery blade should feature a shallow shell with not only non-uniform planform but also variable
chordwise curvature. Thus an open conical shell model is more appropriate. The vibration of open conical

shells has been reported respectively for untwisted shells with uniform thickness (Lim and Liew, 1995b),

pretwisted shells with uniform thickness (Liew et al., 1994), and pretwisted shells with variable thickness

(Liew et al., 1995).

Despite the intensive research on turbomachinery blades as describe above, to the author�s knowledge,
most of the publications assume linear pretwist and are valid only for a small angle of pretwist, presumably

less than 30�. In some of the publications, numerical solutions were presented for blades of up to 45� of
angle of pretwist. These results are thus unreliable and the models cannot be applied to analyze structural
dynamics of drills as drills are helicoidal structures with highly non-linear pretwist. Among some analyses

which consider large non-linear pretwist of plates and helicoidal shells with and without side-force are

Reissner (1954, 1959), Maunder and Reissner (1957), Knowles and Reissner (1959), O�Mathuna (1963),
Wan (1967, 1968, 1969a,b, 1970, 1990), Reissner and Wan (1968), Mallett and Wan (1971, 1973) analyzing

the axial extension, torsion, rotationally symmetric shearing, bending and spirally sinusoidal stress dis-

tribution. Besides, Walker (1978) considered the vibration of fan blades, Tsuiji et al. (1994a,b) presented

formulation for free vibration of curved, pretwisted thin plates using a non-orthogonal coordinate system

and Mockensturm and Mote (2001) analyzed the response of twisted plates with fixed support separa-
tion. Although significant solutions were presented for helicoidal structures with large angle of pretwist,

no solutions are available for bending of such structures in the presence of an external lateral surface

loading.

In this paper, it is intended to present a new approach and numerical solutions for bending analysis of

helicoidal drilling structures, i.e. structures with highly non-linear pretwist, subject to an external lateral

loading. It also discussed the extent of applicability of linearized twisting curvature in the analysis of

pretwisted plates. With reference to a natural orthogonal coordinate system, the non-linear pretwist is

formulated and the energy stored in a distorted drill model subjected to constant transverse pressure is
derived based on the shell theory of Goldenveizer (1961) and Novozhilov (1964). By integrating the internal

strain energy and external pressure work over the drill domain, a non-homogeneous system of equations is

presented and numerical solutions are obtained. Significant structural responses such as deformation

components, bending resultants and the effects of width and thickness of helicoid are analyzed and dis-
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cussed. The analysis can be extended to other areas of interest such as applications of blades and motors in

MEMS and also on biomechanics if the non-Newtonian fluid lateral loading is taken into consideration.
2. Helicoidal model with non-linear pretwist and formulation of strains

The geometry of a helix and a helicoid with length a, radius R, width b and projected angle of pretwist h0
(at a) are shown in Figs. 1 and 2. The helicoidal structure is subject to a lateral load q. For such a helicoid
we impose a condition of b < R. A curvilinear coordinate system, perpendicular and tangential to the helix

and lying in the osculating plane ðr; or=ohÞ, is adopted. With the binormal vector to the helix b, it forms an
orthogonal coordinate system ðr; or=oh; bÞ, and its transformation with respect to the Cartesian system
ði; j; kÞ is
r ¼ rðcos hi þ sin hjÞ þ h
u
k ð1Þ
where u ¼ h0=a is the rate of change of h along the z-axis, or the rate of pretwist. For this curvilinear
coordinate system, the Lam�ee parameters or coefficients of the first quadratic form can be derived as hr ¼ 1,

hh ¼ ð1=uÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2u2

p
and the base vectors are
er ¼ cos hi þ sin hj

eh ¼
1

hh

�
� r sin hi þ r cos hj þ 1

u
k

�

eb ¼
1

uhh
½sin hi � cos hj þ ruk�

ð2a–cÞ
Deriving from the theory of surfaces (Young, 1993), a helix (Fig. 1) has an infinite radius of curvature
with respect to the coordinates ðr; hÞ, whereas the radius of twist (or torsion of the space curve r) is finite as
(Lim, 1999a,b)
Fig. 1. Geometry of a helix.



Fig. 2. Geometry of a helicoidal structure.
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1

Rr
¼ 0;

1

Rh
¼ 0;

1

Rrh
¼ � u

1þ r2u2
¼ � 1

uh2h
ð3a–cÞ
where Rr and Rh are the radius of curvatures in the r- and h-directions, respectively, and Rrh is the radius of

twist. The twisting curvature derived in Eq. (3c) is non-linear and, therefore, it accommodates a surface

with an arbitrarily large twisting curvature instead of the linearized twisting curvature (Leissa et al., 1982,

1984; Leissa and Ewing, 1983; Lee et al., 1984; Liew and Lim, 1994a,b; Liew et al., 1994, 1995; Lim and
Liew, 1995a,b) which is only valid for a small angle of pretwist.

Let uðr; hÞ be the displacement vector composing of ur, uh in the osculating plane and ub in the binormal
direction, then the linear normal strains, shear strains, changes of curvature and twist can be derived based

on the shell theory of Goldenveizer (1961) and Novozhilov (1964) as
err ¼
our
or

; ehh ¼
1

hh

ouh

oh
þ rur

h2h
; crh ¼

ouh

or
� ruh

h2h
þ 1

hh

our
oh

� 2ub
uh2h

ð4a–cÞ
jrr ¼ � 3

2uh2h

ouh

or
þ 3ruh

2uh4h
� o2ub

or2
þ 1

2uh3h

our
oh

ð4dÞ
jhh ¼ � 3

2uh3h

our
oh

� 1

h2h

o2ub
oh2

� ruh

2uh4h
� r
h2h

oub
or

þ 1

2uh2h

ouh

or
ð4eÞ
srh ¼
1

hh

o2ub
oroh

þ r
h3h

oub
oh

� 1

uh2h

our
or

� 1

uh3h

ouh

oh
þ rur

uh4h
ð4fÞ
The strain expressions above deviate slightly from the expressions of Wan (1967, 1968) and Reissner and
Wan (1968) which may be due to different shell theories adopted.
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3. Formulation of energy, work and a non-homogeneous system

During bending, the strain energy for a helicoidal structure with a constant thickness h can be expressed
as
U ¼ Us þ Ub

¼ 6D
h2

Z Z
A

e2rr

�
þ e2hh þ 2merrehh þ

1� m
2

c2rh

�
hh drdh

þ D
2

Z Z
A

j2rr
�

þ j2hh þ 2mjrrjhh þ 2ð1� mÞs2rh
�
hh drdh ð5Þ
where D ¼ Eh3=12ð1� m2Þ is the flexural rigidity, E is the Young�s modulus and m is the Poisson ratio. The
first and second integrals in Eq. (5) correspond to the stretching strain energy, Us, and bending strain

energy, Ub, respectively. Equations for varying thickness hðr; hÞ can be reformulated accordingly, by
retaining h3ðr; hÞ in the domain integrals for strain energy in Eq. (5).
The work done due to external loading is
W ¼
Z Z

A
qðr; hÞ � uðr; hÞhh drdh ð6Þ
where qðr; hÞ is the loading distribution over domain A. Assuming the loading normal to helicoid axis is
along the positive x-direction (Fig. 2) and be represented by q ¼ qi. As the helicoid is assumed infinitely
long, it is possible to analyze only one unit (360�) of the repeating helicoid. Decomposing q ¼ qi in the
orthogonal coordinate system ðr; or=oh; bÞ yields
q ¼ q cos her �
qr sin h

hh
eh þ

q sin h
uhh

eb ð7Þ
Substituting Eq. (7) into Eq. (6) yields the work done on the helicoid as
W ¼ q
Z Z

A
hh cos hur

�
� r sin huh þ

sin h
u

ub

�
drdh ð8Þ
For brevity and generality, a set of dimensionless coordinate system and dimensionless parameters are

defined as
�rr ¼ r
R
; h ¼ h

h0
; u ¼ Ru; �hhh ¼

hh

R
; �uur ¼

ur
R
; �uuh ¼

uh

R
; �uub ¼

ub
R

ð9a–gÞ
Using these non-dimensional scheme and substituting expressions in Eqs. (4a–f) into the equations for
stretching strain energy and bending strain energy in Eq. (5) yield
Us ¼
6D
h2

Z Z
�AA

h0�hhh
o�uur
o�rr

 !2
8<
: þ 1

�hhh

o�uuh

oh

 !2

þ 2�rr
�hh2h

�uur
o�uuh

oh
þ h0�rr2

�hh3h
�uu2r þ 2m

o�uur
o�rr

o�uuh

oh

"
þ h0�rr

�hhh
�uur

#

þ 1� m
2

h0�hhh
o�uuh

o�rr

 !2
2
4 � 2h0�rr

�hhh
�uuh

o�uuh

o�rr
þ 2

o�uur
oh

o�uuh

o�rr
� 4h0

u�hhh

o�uuh

o�rr
�uub þ

h0�rr2

�hh3h
�uu2h �

2�rr
�hh2h

o�uur
oh

uh

þ 4h0�rr
u�hh3h

�uuh�uub þ
1

h0�hhh

o�uur
oh

 !2

� 4

u�hh2h

o�uur
oh

�uub þ
4h0
u2�hh3h

�uu2b

3
5
9=
;d�rrdh ð10Þ
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and
Ub ¼
D
2

Z Z
A

5� 3m

2h0u2�hh5h

o�uur
oh

� �2(
þ ð3� 5mÞ�rr

u2�hh6h

o�uur
oh

�uuh �
3� 5m

u2�hh4h

o�uur
o�hh

o�uuh

o�rr
þ ð3� mÞ�rr

u�hh4h

o�uur
oh

o�uub
o�rr

� 1� 3m

u�hh2h

o�uur
oh

o2�uub
o�rr2

þ 3� m

h0u�hh4h

o�uur
oh

o2�uub

oh
2
þ ð5� 3mÞh0�rr2

2u2�hh7h
�uu2h �

ð5� 3mÞh0�rr
u2�hh5h

�uuh
o�uuh

o�rr

þ ð1� 3mÞh0�rr2
u�hh5h

�uuh
o�uub
o�rr

� ð3� mÞh0�rr
u�hh3h

�uuh
o2�uub
o�rr2

þ ð1� 3mÞ�rr
h0u�hh5h

�uuh
o2�uub

oh
2
� ð5� 3mÞh0

2u2�hh3h

o�uuh

o�rr

� �2

þ ð1� 3mÞh0�rr
u�hh3h

o�uuh

o�rr
o�uub
o�rr

þ ð3� mÞh0
u�hhh

o�uuh

o�rr
o2�uub
o�rr2

� 1� 3m

h0u�hh3h

o�uuh

o�rr
o2�uub

oh
2
� h0�rr2

�hh3h

o�uub
o�rr

� �2

þ 2mh0�rr
�hhh

o�uub
o�rr

o2�uub
o�rr2

þ 2�rr
h0�hh3h

o�uub
o�rr

o2�uub

oh
2
þ h0�hhh

o2�uub
o�rr2

� �2
þ 2m

h0�hhh

o2�uub
o�rr2

o2�uub

oh
2
þ 1

h30�hh
3
h

o2�uub

oh
2

� �2

þ 2ð1� mÞ
�hhh

1

h0

o2�uub
o�rroh

� �2"
� 2�rr

h0�hh2h

o�uub
oh

o2�uub
o�rroh

þ 2

u�hhh

o�uur
o�rr

o2�uub
o�rroh

þ 2

h0u�hh2h

o�uuh

oh

o2�uub
o�rroh

� 2�rr
u�hh3h

�uur
o2�uub
o�rroh

þ �rr2

h0�hh4h

o�uub
oh

� �2
� 2�rr

u�hh3h

o�uur
o�rr

o�uub
oh

� 2�rr
h0u�hh4h

o�uuh

oh

o�uub
oh

þ 2�rr2

u�hh5h
�uur
o�uub
oh

þ h0
u2�hh2h

o�uur
o�rr

� �2
þ 2

u2�hh3h

o�uur
o�rr

o�uuh

oh

� 2h0�rr
u2�hh4h

�uur
o�uur
o�rr

þ 1

h0u2�hh4h

o�uuh

oh

� �2
� 2�rr

u2�hh5h
�uur
o�uuh

oh
þ h0�rr2

u2�hh6h
�uu2r

��
d�rrdh ð11Þ
which involve the integration over the normalized domain A. In terms of these dimensionless terms, the
external work can be expressed as
W ¼ qR3h0

Z Z
�AA

�hhh cos h�uur
�

� r sin h�uuh þ
sin h
u

�uub

�
d�rrdh ð12Þ
The dimensionless displacement components ð�uur; �uuh; �uubÞmay be represented as a general two-dimensional
polynomial series as
�uur ¼
Xm
i¼1

Ci
r/

i
rð�rr; hÞ; �uuh ¼

Xm
i¼1

Ci
h/

i
hð�rr; hÞ; �uub ¼

Xm
i¼1

Ci
b/

i
bð�rr; hÞ ð13a–cÞ
where Ci
r, C

i
h, C

i
b are coefficients and /i

r, /
i
h, /

i
b are admissible shape functions of the i-term. The admissible

shape functions can be represented by truncated two-dimensional polynomial series to be defined in due

course.

In accordance with the Ritz principle, an energy functional can be defined as
F ¼ U � W ð14Þ

which can be minimized with respect to the coefficients as
oF
oCi

r

¼ 0;
oF
oCi

h

¼ 0;
oF
oCi

b

¼ 0 ð15Þ
to yield a system of non-homogeneous equations as
½K �fCg � fQg ¼ 0 ð16Þ
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where
½K � ¼
K rr K rh K rb

Khh Khb

sym Kbb

2
4

3
5; fCg ¼

C r

Ch

Cb

8<
:

9=
;; fQg ¼

Qr

Qh

Qb

8<
:

9=
; ð17a–cÞ
are the stiffness matrix, displacement coefficient vector and external loading vector, respectively. Elements

of the stiffness sub-matrices can be derived as
K ij
rr ¼

12R2

h2
I ijð1010;0;1Þrr þ I ijð0000;2;�3Þrr þ m I ijð0010;0;�1Þrr

�
þ I ijð1000;0;1Þrr

�
þ 1� m

2h20
I ijð0101;0;�1Þrr

#"

þ 5� 3m

2u2h20
I ijð0101;0;�5Þrr þ 2ð1� mÞ

u2
I ijð1010;0;�3Þrr

�
� I ijð0010;1;�5Þrr � I ijð1000;1;�5Þrr � I ijð0000;2;�7Þrr

�
ð18aÞ

K ij
rh ¼

12R2

h2h0
I ijð0001;1;�2Þrh

h
þ mI ijð1001;0;0Þrh þ 1� m

2
I ijð0110;0;0Þrh

�
þ I ijð0100;1;�2Þrh

�i

þ 3� 5m

2u2h0
I ijð0100;1;�6Þrh

�
� I ijð0100;1;�4Þrh

�
þ 2ð1� mÞ

u2h0
I ijð1001;1;�4Þrh

�
� I ijð0001;1;�6Þrh

�
ð18bÞ

K ij
rb ¼ � 12R

2ð1� mÞ
h2uh0

I ijð0100;0;�2Þrb þ 3� m
2uh0

I ijð0110;1;�4Þrb

�
þ I ijð0102;0;�4Þrb

�
� 1� 3m
2uh0

I ijð0120;0;�2Þrb

þ 2ð1� mÞ
uh0

I ijð1011;0;�2Þrb

�
� I ijð0011;1;�4Þrb � I ijð1001;1;�4Þrb � I ijð0001;2;�6Þrb

�
ð18cÞ

K ij
hh ¼

12R2

h2
1

h0
I ijð0101;1;�1Þhh

�
þ 1� m

2
I ijð1010;0;1Þhh

�
� I ijð0010;1;�1Þhh � I ijð1000;1;�1Þhh þ I ijð0000;2;�3Þhh

��

þ 5� 3m

2u2
I ijð1010;2;�7Þhh

�
� I ijð0010;1;�5Þhh � I ijð1000;1;�5Þhh � I ijð1010;0;�3Þhh

�
þ 2ð1� mÞ

u2h20
I ijð0101;0;�5Þhh ð18dÞ

K ij
hb ¼

12R2ð1� mÞ
h2u

I ijð0000;1;�3Þhb

�
� I ijð1000;0;�1Þhb

�
þ 1� 3m

2u

�
I ijð0010;2;�5Þhb � I ijð1010;1;�3Þhb þ 1

h20
I ijð0002;1;�5Þhb

� 1

h20
I ijð1002;0;�3Þhb

�
þ 3� m

2u
I ijð1020;0;�1Þhb

�
� I ijð0020;1;�3Þhb

�
þ 2ð1� mÞ

uh20
I ijð0111;0;�3Þhb

�
� I ijð0101;1;�5Þhb

�
ð18eÞ

K ij
bb ¼

24R2ð1� mÞ
h2u2

I ijð0000;0;�3Þbb þ I ijð1010;2;�3Þbb þ I ijð2020;0;1Þbb þ m I ijð1020;1;�1Þbb

�
þ I ijð2010;1;�1Þbb

�

þ 1

h20
I ijð1002;1;�3Þbb

h
þ I ijð0210;1;�3Þbb þ m I ijð2002;0;�1Þbb

�
þ I ijð0220;0;�1Þbb

�i
þ 1

h40
I ijð0202;0;�3Þbb

þ 2ð1� mÞ
h20

I ijð1111;0;�1Þbb

�
� I ijð0111;1;�3Þbb � I ijð1101;1;�3Þbb þ I ijð0101;2;�5Þbb

�
ð18fÞ
and elements of the external load vector are
Qi
r ¼

qR3

D

Z Z
A

�hhh cos h/i
r d�rrdh ð19aÞ
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Qi
h ¼ � qR3

D

Z Z
A
�rrh sin h/i

h d�rrdh ð19bÞ
Qi
b ¼

qR3

D

Z Z
A

sin h
u

/i
b d�rrdh ð19cÞ
The integral notation in Eqs. (18a–f) is defined as
I ijðabcd;e;f Þab ¼
Z Z

A

oaþb/i
að�rr; hÞ

o�rraoh
b

ocþd/i
bð�rr; hÞ

o�rrcoh
d �rre�hhfh d�rrdh ð20Þ
By specifying an external loading parameter qR3=D, the system of non-homogeneous equations (16) can be

solved to yield the response of the helicoidal structure. This system can be solved numerically using a

standard numerical solver, such as the IMSL library in Fortran, to obtain the deformation solution.
Detailed derivatives of the energy functional as given in Eq. (15) are presented in Appendix A.
4. Boundary conditions and admissible shape functions

There are four boundaries for the helicoid considered in this manuscript, two for r ¼ constant and
another two for h ¼ constant. For each boundary, there are four geometric or natural boundary condi-

tions. Due to geometric symmetry of a helicoid for every cycle of 360� along the axis, we have the following
geometric boundary conditions when analyzing one-cycle of helicoid. At the two boundaries when h ¼ 0�
and h ¼ 360� which coincide with the x-axis (Figs. 1 and 2), the geometric boundary conditions are
uh ¼ ub ¼ 0 ð21Þ
The displacement component ur 6¼ 0 applies on these boundaries because the helicoid is subjected to an

external loading in the x-direction while uh ¼ ub ¼ 0 apply because of symmetry of repeating helicoid for

every unit of 360�. For the other two free boundaries where �rr ¼ 1� b=R (inner boundary) and �rr ¼ 1 (outer

boundary), there is no geometric boundary conditions as no displacement or rotation is constrained. Unlike

the plate and shell analyses, the four natural boundary conditions on the boundary of r ¼ constant involves
coupled relations of normal force Nr, tangential force Nrh, shear forces Qr, bending moment Mr and twisting

moment Mrh. Similarly, the other two natural boundary conditions on the boundary of h ¼ constant in-

volves coupled relations of Nh, Nhr, Qh, Mh and Mhr. The exact governing differential equations and natural

boundary conditions can be derived using the Euler–Lagrange equation, the Hamitonian principle or the

method of variation of energy (Goldenveizer, 1961; Novozhilov, 1964; Leissa, 1973; Rao, 1991) which is

not within the scope of this analysis. Coupling of these terms in the natural boundary conditions surfaced

due to the presence of the non-linear radius of pretwist 1=Rrh. A description on natural boundary conditions

of a helicoidal structure can be referred to Goldenveizer (1961) but no explicit expression is available.
Fortunately, only the geometric boundary conditions are required using the Ritz principle here. The

geometric boundary conditions in Eq. (21) can be imposed to the strain energy and work expressions in

Eqs. (10)–(12) as described below.

The geometric boundary conditions in Eq. (21) indicates that the helicoid is not properly supported and

will experience a rigid body translation along the x-direction when subject to the distributed loading. Here,
we deal with an infinitely long periodic helicoidal structure and the interest is in the relative deformation of

helicoid with respect to a reference point, in this case the origin at (0,0,0), which translates in parallel with

the rigid body motion. The rigid body mode has been intentionally excluded by setting at the outset the
existence of strain energy in Eq. (5) due to the relative deformation of helicoidal structure during bending.
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With periodic boundary conditions in Eq. (21) and using the orthogonality of trigonometric functions, it

is easy to verify that displacement and stress fields of the periodic helicoidal structure can be expressed in

trigonometric series in terms of sin h and cos h. Therefore, the two-dimensional shell-like problem can be

simplified into a one-dimensional beam-like problem. The more complicated two-dimensional shell-like
analysis has been adopted here in order to facilitate generalization of infinitely long helicoidal structure in

this paper to a more realistic finite helicoid with non-periodic boundary conditions.

The displacement components ð�uur; �uuh; �uubÞ at mid-surface of helicoidal structure are approximated by
finite series expressed in Eqs. (13a–c). The corresponding admissible shape functions ð/r;/h;/bÞ are sets of
geometrically compliant two-dimensional polynomials derived such that the geometric boundary condi-

tions are satisfied at the outset. They are composed of the product of a series of simple two-dimensional

polynomials F ð�rr; hÞ and boundary-compliant basic functions /b
r , /b

h, /b
b. The latter are geometric expres-

sions of the helicoid boundary raised to an appropriate basic power in accordance with the corresponding
boundary constraints. Accordingly, the admissible shape functions are
Xm
i¼1

/i
a ¼ F ð�rr; hÞ/b

a; F ð�rr; hÞ ¼
Xp
q¼0

Xq
i¼0

�rrq�ih
i ð22a; bÞ
where a ¼ r, h or b. The highest degree of polynomial in the functions is p and it is related to the number of
terms m by
m ¼ ðp þ 1Þðp þ 2Þ
2

ð23Þ
The boundary-compliant basic functions /b
r , /b

h, /b
b are defined as the product of the equations of

continuous piecewise boundary geometries raised to an appropriate basic power that corresponds to the

type of boundary constraint. For constraints as given in Eq. (21), the basic functions are
/b
r ¼ 1; /b

h ¼ hðh � 1Þ; /b
b ¼ hðh � 1Þ ð24Þ
and, therefore the corresponding admissible shape functions are
Xm
i¼1

/i
r ¼

Xp
q¼0

Xq
i¼0

�rrq�ih
i
;
Xm
i¼1

/i
h ¼ hðh � 1Þ

Xp
q¼0

Xq
i¼0

�rrq�ih
i
;
Xm
i¼1

/i
b ¼ hðh � 1Þ

Xp
q¼0

Xq
i¼0

�rrq�ih
i ð25a–cÞ
5. Results and discussion on non-linear twisting curvature

In many previous dynamic analyses of turbomachinery blade and pretwisted plates, a linearized twisting

curvature of a=Rrh � � tan h0 (Leissa et al., 1982, 1984; Leissa and Ewing, 1983; Lee et al., 1984; Liew and

Lim, 1994a,b; Liew et al., 1994, 1995; Lim and Liew, 1995a,b) has been adopted. The linearized twisting
curvature thus is only valid for a small angle of pretwist. No research has been performed as to what extent

the linearized twisting curvature is applicable except the preliminary analyses of Lim (1999a,b). This issue is

herewith discussed in detail.

The derivation of non-linear twisting curvature in Eq. (3c) has generalized the conventional linearized

twisting curvature a=Rrh � � tan h0 so that a highly pretwisted helicoidal structure can be analyzed. There
exist two inherent approximations in assuming a=Rrh � � tan h0 instead of that in Eq. (3c). First,

h0 � tan h0 and second, a=Rrh � �h0 is only valid if ru 
 1. Error in the first assumption is direct as an

error of approximately 10% will occur if the angle of pretwist is h0 ¼ 30�. To analyze the error due to the
second assumption, we have to refer to Fig. 3. In Fig. 3, the relationship of large non-linear twisting

curvature



Fig. 3. Large non-linear twisting curvature for constant dimensionless rate of pretwist u.
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R
jRrhj

¼ u

1þ �rr2u2
ð26Þ
with respect to the distance from helicoid axis r=R, for constant dimensionless rate of pretwist u, is pre-
sented. Considering a pretwisted surface of constant rate of pretwist u ð¼ Rh0=aÞ as shown in Fig. 3, the
twisting curvature at a point r=R from the axis would be almost constant ð� uÞ if u6 p=18 rad or 10�. As u
is dependent on the projected angle h0 and a=R, it implies that h0 must be remained very small for a short
helicoidal structure or a short turbomachinery blade (a small a=R) if a linearized twisting curvature is to be
used. On the other hand, h0 may be allowed to have a higher value if the a=R ratio for the helicoidal

structure or turbomachinery blade is large. Nevertheless, u6 p=18 must be upheld so long as the linearized
twisting curvature is used. It is interesting to see in Fig. 3 that the twisting curvature decreases from the axis

outwards. It decreases quite linearly for u � p=9 rad or 20� and fairly linearly for u � p=6 rad or 30�. For
uP p=6, the non-linearity effect becomes very obvious and a non-linear twisting curvature in accordance
with Eq. (3c) must be adopted. As shown in Fig. 3, the twisting curvature along the axis (r=R ¼ 0) increases

for an increasing u. However, it is interesting to note that for very high u P p=2, the twisting curvature on
the outer boundary of the helicoid (r=R ¼ 1) is actually smaller than that of a smaller u. In reality, the
twisting curvature decreases sharply and then it approaches a constant value asymptotically when r=R ! 1

for a helicoid with a very high u, given by
lim
u!1

R
jRrhj

¼ 1

�rr2u
ð27Þ
In Fig. 4, the relationship of twisting curvature with respect to varying u for constant r=R is presented. In
this case, the effect of u on R=jRrhj for a constant r=R can be analyzed. Considering a helix (see Fig. 1) with a
constant r=R, the twisting curvature increases when dimensionless rate of pretwist u increases from zero
initially. As u further increases, the twisting curvature reaches a maximum before it starts decreasing. The

maximum twisting curvature could be achieved if u maintains a particular relationship with respect to r=R.
The maximum twisting curvature could be determined by differentiating R=jRrhj in Eq. (26) with respect to
u and setting it to zero, dðR=jRrhjÞ=du ¼ 0, thus yielding



Fig. 4. Large non-linear twisting curvature for constant dimensionless distance r=R.
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R
jRrhj

!!!!
max

¼ u
2
¼ 1

2�rr
ð28Þ
which occurs at u ¼ 1=�rr. As shown in Fig. 4, for instance, the maximum twisting curvature for �rr ¼ 0:5 is
ðR=jRrhjÞmax ¼ 1 which occurs at u ¼ 2 rad.
6. Convergence study and numerical examples

As the displacement admissible functions involve finite polynomial series, convergence of numerical

solutions has to be established. The convergence of maximum dimensionless bending deflection �uumax for an
infinite helicoid with m ¼ 0:3 and qR3=D ¼ 1 is presented in Tables 1 and 2 for two cases of helicoid

thickness h=R ¼ 0:02 and h=R ¼ 0:04, respectively. Various helicoid geometric parameters are considered,
ranging from highly pretwisted to slightly pretwisted (increasing a=R) and from slender to wide (increasing
b=R). Two components �uuh and �uub are tabulated along with the resultant displacement �uumax ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uu2r þ �uu2h þ �uu2b

p
.

Values for the third component �uur are not presented because �uur at maximum bending deflection is a few

orders smaller than the other two components and it contributes insignificantly to the maximum resultant

displacement �uumax.
In Tables 1 and 2, the number of terms in the series representation in Eqs. (13a–c) are increased steadily.

As observed, very good numerical convergence has been achieved and in many cases the error of

convergence is less than 1%. Convergence tests were stopped at different values of m when numerical ill-

conditioning of matrix appears thus prohibiting accurate numerical solutions be obtained for higher values
of m. A number of significant numerical phenomena have also been observed. For a slender helicoid (a

small width ratio b=R), numerical instability occurs for a small value of m as compared to a wide helicoid.

This is because b=R is a parameter equivalent to the aspect ratio for a rectangular plate. A rectangular plate

with a small aspect ratio resembles a beam and in this case the two-dimensional mid-plane of a plate may

well be represented as a one-dimensional mid-axis. Thus the plate analysis reduces to the beam analysis. If

two-dimensional numerical representation is used to simulate a one-dimensional beam model, numerical

instability usually occurs because one of the dimensions is far higher than the other. In Tables 1 and 2,

m ¼ 5 (21 terms) are included in the displacement admissible functions (13a–c) for b=R ¼ 0:2 while m ¼ 7
(36 terms) are included in the functions for b=R ¼ 0:7.



Table 1

Convergence of maximum dimensionless bending deflection (�10�3) for an infinite helicoid with m ¼ 0:3, h=R ¼ 0:02, qR3=D ¼ 1 where

�uumax occurs at �rr ¼ 1 and h0 ¼ p=2 rad or 3p=2 rad

a=R b=R p �uuh �uub �uumax

5 0.2 4 0.13909 1.5319 1.5382

5 0.13970 1.5458 1.5521

0.3 4 0.092116 0.79004 0.79539

5 0.093682 0.81727 0.82262

0.4 4 0.069523 0.51883 0.52347

5 0.071897 0.55265 0.55731

6 0.072638 0.55381 0.55855

0.5 4 0.056761 0.40278 0.40676

5 0.060022 0.44508 0.44911

6 0.060095 0.44608 0.45011

0.6 4 0.051149 0.37948 0.38291

5 0.055897 0.43509 0.43867

6 0.056381 0.44139 0.44498

7 0.056588 0.44297 0.44657

0.7 4 0.050333 0.40074 0.40389

5 0.056565 0.46042 0.46389

6 0.057844 0.47694 0.48044

7 0.058063 0.47751 0.48103

10 0.2 4 0.47968 5.5653 5.5859

5 0.48078 5.5939 5.6145

0.3 4 0.31326 2.5888 2.6077

5 0.31564 2.6354 2.6543

0.4 4 0.23107 1.5307 1.5480

5 0.23452 1.5850 1.6023

6 0.23633 1.5929 1.6098

0.5 4 0.18126 1.0300 1.0459

5 0.18577 1.0935 1.1092

6 0.18758 1.0942 1.1102

0.6 4 0.15008 0.79812 0.81214

5 0.15642 0.88088 0.89468

6 0.15664 0.88369 0.89754

7 0.15689 0.88593 0.89979

0.7 4 0.13253 0.73106 0.74302

5 0.14169 0.83999 0.85190

6 0.14292 0.85542 0.86737

7 0.14343 0.85878 0.87077
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Having established the convergence and accuracy of numerical solutions, some numerical examples are

presented to study the effects of various geometric parameters on the bending deformation of helicoid. In

Figs. 5–8, the effects of width ratio b=R on the maximum resultant bending deformation �uumax is investigated
for helicoid of increasing pretwist (decreasing a=R) and increasing thickness ratio h=R. For a dimensionless
rate of pretwist u ¼ h0=ða=RÞ with a fixed periodic helicoid where h0 ¼ 360�, we may regard the helicoid as
having a low rate of pretwist for a high a=R and vice versa. From Fig. 5, it is observed that �uumax decreases



Table 2

Convergence of maximum dimensionless bending deflection (�10�3) for an infinite helicoid with m ¼ 0:3, h=R ¼ 0:04, qR3=D ¼ 1 where

�uumax occurs at �rr ¼ 1 and h0 ¼ p=2 rad or 3p=2 rad

a=R b=R p �uuh �uub �uumax

5 0.2 4 0.54310 5.7570 5.7825

5 0.54424 5.7716 5.7972

0.3 4 0.34318 2.6743 2.6962

5 0.34612 2.7153 2.7373

0.4 4 0.25682 1.7380 1.7569

5 0.26251 1.8067 1.8257

6 0.26492 1.8076 1.8269

0.5 4 0.20675 1.2803 1.2969

5 0.21488 1.3667 1.3835

6 0.21737 1.3685 1.3857

7 0.21738 1.3690 1.3862

0.6 4 0.17423 1.0345 1.0490

5 0.18473 1.1393 1.1541

6 0.18763 1.1441 1.1593

7 0.18788 1.1465 1.1618

0.7 4 0.15570 0.93835 0.95118

5 0.16957 1.0707 1.0840

6 0.17055 1.0764 1.0898

7 0.17106 1.0801 1.0936

10 0.2 4 1.8965 21.663 21.746

5 1.8992 21.712 21.795

0.3 4 1.2156 9.5585 9.6355

5 1.2206 9.6395 9.7165

0.4 4 0.89075 5.5394 5.6107

5 0.89929 5.6568 5.7278

6 0.90582 5.6636 5.7356

0.5 4 0.69714 3.6336 3.6999

5 0.70880 3.7717 3.8378

6 0.71474 3.7895 3.8564

7 0.71483 3.7981 3.8648

0.6 4 0.56452 2.5380 2.6002

5 0.57900 2.6950 2.7566

6 0.58490 2.7057 2.7682

7 0.58501 2.7064 2.7690

0.7 4 0.46966 1.8874 1.9452

5 0.48798 2.0772 2.1340

6 0.49460 2.0855 2.1434

7 0.49514 2.0895 2.1474
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sharply for a slender helicoid when b=R is increasing. At a certain b=R, a minimum �uumax is reached and
beyond this point, an increase in b=R causes �uumax to increase. However, the rate of increase of �uumax beyond
the critical �uumax is much smaller than the rate of decrease before the critical �uumax. In Figs. 6–8, similar
phenomenon is observed except that in some of the cases, a critical �uumax has not been reached within the
range of 0:26 b=R6 0:7 under investigation. A wider helicoid has higher structural stiffness and as the



Fig. 5. The effect of dimensionless width on maximum dimensionless deflection for an infinite helicoid with m ¼ 0:3, h=R ¼ 0:01 and

qR3=D ¼ 1.

Fig. 6. The effect of dimensionless width on maximum dimensionless deflection for an infinite helicoid with m ¼ 0:3, h=R ¼ 0:02 and

qR3=D ¼ 1.
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width ratio increases, the loading is higher because a larger surface of the helicoid is subjected to the
pressure loading. From physical point of view, it is the presence of both increasing structural stiffness and

increasing pressure loading which determines the existence a critical, minimum �uumax.
It is also a common fact in Figs. 5–8 that �uumax decreases with decreasing a=R (or increasing pretwist). As

pretwist increases, the rate of decrease of �uumax becomes smaller as the curves are closer apart. This fact is
consistent with the understanding that the stiffness of a helicoid increases with pretwist and, therefore, a

higher pretwist results in smaller deformation.

The effect of thickness ratio h=R on �uumax cannot be directly observed in Figs. 5–8. At the first glance, an
increase in h=R results in higher �uumax and it is contradictory to the common perception that a thicker
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Fig. 7. The effect of dimensionless width on maximum dimensionless deflection for an infinite helicoid with m ¼ 0:3, h=R ¼ 0:03 and

qR3=D ¼ 1.

Fig. 8. The effect of dimensionless width on maximum dimensionless deflection for an infinite helicoid with m ¼ 0:3, h=R ¼ 0:04 and

qR3=D ¼ 1.
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structure has higher stiffness and thus a smaller deformation. The reason for this inconsistency is very
simple. The loadings for all the cases in Figs. 5–8 are different. In all cases, the loading parameter is set at

qR3=D ¼ 1. Since the flexural rigidity D ¼ Eh3=12ð1� m2Þ depends on thickness, the loading parameter is, in
fact, q0ðR=hÞ3 where q0 ¼ 12ð1� m2Þq=E. As a result, a n times increase in h=R while maintaining loading at
q0ðR=hÞ3 ¼ 1 induces an increase of loading parameter of n3 times. In this case, the helicoid in Fig. 6 has a
thickness ratio of double of that of Fig. 5 but it has a loading eight times higher. Comparing the maximum

deflection �uumax, it has only increased by less than four times. In conclusion, a double-increase of thickness
and an octagonal-increase of loading resulting in less than four times increase in deflection do not con-

tradict the law of physics. The same reasoning applies to a comparison of results in Figs. 6 and 7 and Figs. 7
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and 8. Comparing Figs. 6 and 7, the thickness ratio increases by 1.5 times while the loading increases by

1:53 ¼ 3:375 times. Meanwhile, �uumax increases by approximately 2.2 times.
The deformation modes for a unit (h0 ¼ 360�) of infinite helicoids are presented in Figs. 9–11, respec-

tively, for a slender helicoid, a wide helicoid and a helicoid with a smaller pretwist. Undeformed and
deformed modes are presented for comparison and clarity. The magnitudes of dimensionless orthogonal

deformation components �uur, �uuh, �uub and their resultant �uu ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�uu2r þ �uu2h þ �uu2b

p
are also presented for the inner

(closer to the axis) and outer (further to the axis) boundaries, respectively. Major contribution of resultant

deformation comes from �uub and this is particularly obvious for the outer boundary. In all cases, the

maximum resultant �uumax always occurs at h0 ¼ p=2 rad and 3p=2 rad because these lines on the helicoidal
surface are normal to the loading direction.
Fig. 9. Deformation of an infinite helicoid with m ¼ 0:3, a=R ¼ 2, b=R ¼ 0:2, h=R ¼ 0:01, h0 ¼ 360� and qR3=D ¼ 1.



Fig. 10. Deformation of an infinite helicoid with m ¼ 0:3, a=R ¼ 2, b=R ¼ 0:7, h=R ¼ 0:01, h0 ¼ 360� and qR3=D ¼ 1.
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It is also observed that the outer boundary deforms higher than the inner boundary. As discussed in Fig.

3, the magnitude of twisting curvature decreases from the helicoid axis outwards along the radial direction.

Because the local stiffness is dependent on the magnitude of twisting curvature, the inner boundary would

have smaller deformation than the outer boundary as its twisting curvature, and thus its local stiffness, is

higher. For instance, the magnitude of �uu increases from the inner boundary to the outer boundary by

approximately two times in Figs. 9 and 11 while in Fig. 10, the increase is approximately 10 times.

It is interesting to note that �uur, �uuh, �uub and �uu are periodic with respect to one-cycle or 360� of helicoid. This is
expected for an infinitely long helicoid because the deformation pattern repeats itself for every cycle of helicoid

along the axis due to symmetry in geometry and pressure loading. It is also noted that �uuh is always 180� out-of-
phasewith respect to the �uub for the inner boundary but they are both in-phase for the outer boundary. For both
the inner and outer boundaries, �uur is always 90� out-of-phase with respect to the other two components.



Fig. 11. Deformation of an infinite helicoid with m ¼ 0:3, a=R ¼ 10, b=R ¼ 0:7, h=R ¼ 0:01, h0 ¼ 360� and qR3=D ¼ 1.
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Comparing Fig. 10 with Fig. 9, the corresponding dimensionless deformation components are of similar

patterns because a steady, constant pressure loading is considered in these examples. A decrease in
structural stiffness or an increase in pressure loading will anticipate an increase in deformation amplitude.

For instance, the overall stiffness of a slender helicoid (b=R ¼ 0:2) in Fig. 9 is smaller than the overall
stiffness of a wider helicoid (b=R ¼ 0:7) in Fig. 10. Therefore, the magnitude of deformation in Fig. 9 is
higher than the corresponding values in Fig. 10. By adjusting the width of the helicoid without changing

the magnitude of pressure loading distribution on the helicoidal structure, it is possible to simulate and

determine the overall stiffness of a helicoidal structure. It is also possible to adopt a varying thickness helicoid

hðr; hÞ so that the stiffness at any single point on the domain of helicoid could be characterized accordingly.
7. Concluding remarks

A new helicoidal model with a large non-linear pretwist based on a natural orthogonal coordinate

system has been established for the bending analysis of helicoidal structures subject to external pressure

loading. The paper also draws a guideline on the extent of applicability of the linearized twisting curvature

model conventionally adopted in analysis of pretwisted plates. Employing the new model, the strain energy

stored in a distorted helicoid and the pressure work of external pressure loading normal to the helicoid axis
have been derived. By integrating the internal strain energy and external pressure work over the helicoidal

domain via the Ritz principle, a non-homogeneous system of equations has been obtained.

The effects of non-linear twisting curvature have been discussed at length. Significant numerical solutions

for structural responses such as deformation components and resultant, effects of width and thickness of

helicoid on bending have been analyzed and discussed. Among the important conclusions are:

• the linearized twisting curvature model is only valid for a small rate of pretwist, u6 p=18 rad;
• the non-linear twisting curvature decreases from the axis outwards and it approaches a constant value,
given by Eq. (27), asymptotically;

• for a helix with varying rate of pretwist, the maximum dimensionless non-linear twisting curvature is

given by half of the dimensionless rate of pretwist which is in turn given by the reciprocal of the dimen-

sionless radial distance, as given by Eq. (28);
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• the maximum dimensionless deflection �uumax decreases with respect to increasing width ratio and there
exists a critical �uumax;

• �uumax decreases for a helicoid with increasing rate of pretwist;
• �uumax always occurs at h0 ¼ p=2 rad and 3p=2 rad at the outer boundary ð�rr ¼ 1Þ on the helicoidal surface
and these lines are normal to the loading direction;

• for the inner boundary of a helicoid, �uuh is always 180� out-of-phase with respect to �uub but they are both
in-phase for the outer boundary, while, for both the inner and outer boundaries, �uur is always 90� out-of-
phase with respect to the other two components; and

• the outer boundary of a helicoid has larger deformation comparing to the inner boundary because its

local stiffness is smaller.

The analysis can be extended to other areas of interest such as turbomachinery blades, drilling struc-
tures, motors in MEMS and also DNA biomechanics.
Acknowledgements

The work described in this paper was fully supported by grants from City University of Hong Kong

[Project No. 7001186 (BC)] and Research Grant Council of the Hong Kong Special Administrative Region

[Project No. CityU 1036/01E]. The detailed comments of reviewers are also gratefully acknowledged.

Appendix A

The derivative of the strain energy components in Eq. (15) can be derived as
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